If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+r=15
We move all terms to the left:
r^2+r-(15)=0
a = 1; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·1·(-15)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{61}}{2*1}=\frac{-1-\sqrt{61}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{61}}{2*1}=\frac{-1+\sqrt{61}}{2} $
| 2x-1+x+9+3x+4=180 | | 18-2(x+3)=12-2x | | 18-2(x+3)=3 | | -6(-8x-8)+4=5-8(-6x-6) | | -3-(6x+9)=-3/2(4x+4)-6 | | -7-2(-7x+8)=-4(-2x+3)+6 | | 3(x+8)^2+27=0 | | -10(-6x-3)+5=4x-7(-8x-5) | | -u+220=58 | | 89=191-u | | 2s^2=10 | | 8(9x+10)-6=6x-3/2(-6x+2) | | 1u=4 | | 14x-13=180+8x+5=360 | | 7+5=2y+10 | | 85=-5(1+6x | | y/4-16=14 | | Y=(7x+100) | | Y=(x+100) | | (x+2)(x+3)(x+10)(x+11)=180 | | (0=7x-21 | | 3(p+17)=10 | | y=4(-1.6)-3 | | 124.50=20(x+4)+3/4x+ | | (6b+7)=(7b-8) | | (3p+6)=(4p+7) | | (1/4)(x+2)+5=-x | | y^2-26y+81=0 | | x/13-9=4 | | -11/2x+2=4 | | 26=v/5-13 | | y-1.7=8.69 |